A System for Learning to Locomotion Using Adaptive Oscillators in the Humanoid Robot

نویسنده

  • Seyed Mojtaba Saif
چکیده

This paper proposes a central pattern generators based control architecture using a frequency adaptive oscillator for learning to locomotion of humanoid robot. Central pattern generators are biological neural networks that can produce coordinated multidimensional rhythmic signals, under the control of simple input signals. They are found both in vertebrate and invertebrate animals for the control of locomotion. In this article, we present a novel system composed of adaptive nonlinear oscillators that can learn arbitrary rhythmic signals in a supervised learning framework, and apply it to control a simulated humanoid robot with up to 22 degrees of freedom. A key feature of the proposed architecture is that the learning is completely embedded in to the dynamical control, and does not require external optimization algorithms. As a test bed, we chose Robocup 3D soccer simulation environment (spark). Experimental results show that learn to walk of the robot could be successfully performed, thus allowing the biped robot to walk fast, stable and straightly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy

This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...

متن کامل

Adaptive Walking Gait for Locomotion on Terrain with Non-uniform Slope

The autonomous locomotion of a legged robot presents several challenges, such as stability and sensitivity to the ground slope. Complex sensory systems, accurate physical models, and demanding computational resources are often required to maintain balance, that together with precise servo control leads to high energy consumption levels. This paper addresses the problem of controlling the locomo...

متن کامل

A New Approach to Design of CPG Model for Stable Humanoid Locomotion Using Neural Oscillators

In this paper, we propose a new model using central pattern generators (CPG) for the stable motion of Humanoid robot. After that we compare the proposed model with the existing Taga’s model of humanoid robot. The Matsuoka Neural Oscillators are used to generate the required signals to realize the coordinated movement of a musculoskeletal model of humanoid

متن کامل

Exploring Social Robots as a tool for Special Education to teach English to Iranian Kids with Autism

This case study investigates the effects of Robot Assisted Language Learning (RALL) on English vocabulary learning and retention of Iranian children with high-functioning autism. Two groups of three male students (6-10 years old) with high-functioning autism participated in the current study. The humanoid robot NAO was used as a teacher assistant to teach English to the RALL group. Both RALL an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011